Correction: Interference of Co-amplified Nuclear Mitochondrial DNA Sequences on the Determination of Human mtDNA Heteroplasmy by Using the SURVEYOR Nuclease and the WAVE HS System
نویسندگان
چکیده
High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC). The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical strategy.
منابع مشابه
Mitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملPopulation structure and variation in Persian sturgeon (Acipenser percicus ) from the Caspian Sea as determind from mitochondrial DNA sequences of the control region
Mitochondria1 DNA (mtDNA) control region sequences were analyzed to evaluate the population genetic structure of Persian sturgeon (Acipenser persicus) in Caspian Sea. A total of 45 specimens were collected from the different locations of the Caspian Sea. MtDNA control region was amplified using PCR. Direct sequencing was performed according standard method. The results showed that 12 haplotypes...
متن کاملRole of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups
Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...
متن کاملTransmission of mitochondrial DNA following assisted reproduction and nuclear transfer.
Mitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination,...
متن کاملHeteroplasmy is ubiquitous and stable at the single cell level
Correspondence: [email protected] Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , One Gustave L. Levy place, New York, 10029, USA Full list of author information is available at the end of the article Abstract Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inherita...
متن کامل